ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome.
نویسندگان
چکیده
Excess carbohydrate intake leads to fat accumulation and insulin resistance. Glucose and insulin coordinately regulate de novo lipogenesis from glucose in the liver, and insulin activates several transcription factors including SREBP1c and LXR, while those activated by glucose remain unknown. Recently, a carbohydrate response element binding protein (ChREBP), which binds to the carbohydrate response element (ChoRE) in the promoter of rat liver type pyruvate kinase (LPK), has been identified. The target genes of ChREBP are involved in glycolysis, lipogenesis, and gluconeogenesis. Although the regulation of ChREBP remains unknown in detail, the transactivity of ChREBP is partly regulated by a phosphorylation/dephosphorylation mechanism. During fasting, protein kinase A and AMP-activated protein kinase phosphorylate ChREBP and inactivate its transactivity. During feeding, xylulose-5-phosphate in the hexose monophosphate pathway activates protein phosphatase 2A, which dephosphorylates ChREBP and activates its transactivity. ChREBP controls 50% of hepatic lipogenesis by regulating glycolytic and lipogenic gene expression. In ChREBP (-/-) mice, liver triglyceride content is decreased and liver glycogen content is increased compared to wild-type mice. These results indicate that ChREBP can regulate metabolic gene expression to convert excess carbohydrate into triglyceride rather than glycogen. Furthermore, complete inhibition of ChREBP in ob/ob mice reduces the effects of the metabolic syndrome such as obesity, fatty liver, and glucose intolerance. Thus, further clarification of the physiological role of ChREBP may be useful in developing treatments for the metabolic syndrome.
منابع مشابه
The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism
Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying ...
متن کاملRecent progress on the role of ChREBP in glucose and lipid metabolism.
Carbohydrate response element binding protein (ChREBP) is a transcription factor activated by glucose that is highly expressed in liver, pancreatic β-cells, brown and white adipose tissues, and muscle. We reported that hepatic suppression of the Chrebp gene improves hepatic steatosis, glucose intolerance, and obesity in genetically obese mice. Moreover, we have studied the role of ChREBP with s...
متن کاملDeficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice.
The transcription factor carbohydrate response element-binding protein (ChREBP) mediates insulin-independent, glucose-stimulated gene expression of multiple liver enzymes responsible for converting excess carbohydrate to fatty acids for long-term storage. To investigate ChREBP's role in the development of obesity and obesity-associated metabolic dysregulation, ChREBP-deficient mice were intercr...
متن کاملIdentification of HNF-4α as a key transcription factor to promote ChREBP expression in response to glucose.
Transcription factor carbohydrate responsive element binding protein (ChREBP) promotes glycolysis and lipogenesis in metabolic tissues and cancer cells. ChREBP-α and ChREBP-β, two isoforms of ChREBP transcribed from different promoters, are both transcriptionally induced by glucose. However, the mechanism by which glucose increases ChREBP mRNA levels remains unclear. Here we report that hepatoc...
متن کاملIntestinal, but not hepatic, ChREBP is required for fructose tolerance.
Increased sugar consumption is a risk factor for the metabolic syndrome including obesity, hypertriglyceridemia, insulin resistance, diabetes, and nonalcoholic fatty liver disease (NAFLD). Carbohydrate responsive element-binding protein (ChREBP) is a transcription factor that responds to sugar consumption to regulate adaptive metabolic programs. Hepatic ChREBP is particularly responsive to fruc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrine journal
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2008